Natural Acetylenes. Part XXXVII. ${ }^{1}$ Polyacetylenes from the Campanulaceae Plant Family. Tetrahydropyranyl and Open Chain C_{14} Polyacetylenic Alcohols from Campanula pyramidalis L. and Campanula medium L.

By Sh. O. Badanyan, R. K. Bentley, J. K. Jenkins, Sir Ewart R. H. Jones,* and V. Thaller, The Dyson Perrins Laboratory, Oxford University, Oxford OX1 30Y

The new mono-ols $\mathrm{RCH}(\mathrm{OH}) \cdot\left[\mathrm{C} \equiv \mathrm{C}_{2} \cdot \mathrm{CH} \stackrel{\boldsymbol{t}}{=} \mathrm{CH} \cdot \stackrel{\mathrm{CH}}{\mathrm{CH}} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \quad\left(\mathrm{R}=\mathrm{Et}\right.\right.$ or $\left.\mathrm{CH}=\mathrm{CH}_{2}\right)$ and the triols $\mathrm{R}\left[\mathrm{C} \equiv \mathrm{C}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH} \quad\left[\mathrm{R}=\mathrm{EtCH}(\mathrm{OH}), \quad \mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH})\right.\right.$, or $\left.\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH}\right]$ have been found in C. pyramidalis L. and C. medium L. (the Canterbury bell) and synthesised. A known mono-ol (III) and a known triol(VII) were also present.

The widespread occurrence of polyacetylenes in the Campanulaceae plant family and the analysis of the polyacetylene content of C. glomerata ${ }^{2}$ and C. oblongifolia ${ }^{3}$ have been reported. We now describe the polyacetylenes of two more representatives, C. pyramidalis L. and C. medium L. (the Canterbury bell), in which a considerable number of similar polyacetylenes are present in low concentrations (each less than 5 mg per kg of fresh plant material). Their isolation by repeated column and complex thin-layer chromatography was a formidable task which incurred appreciable loss of material. Eventually, the unambiguous allocation of structures to seven polyacetylenes was possible by direct comparison with synthetic specimens or samples
low concentrations from the triol fraction, and some high polarity polyacetylenes remained in the aqueous phase after the ether extraction.
C. medium was found to produce the largest variety of polyacetylenes yet encountered in the Campanulaceae; in the roots, in addition to the mono-ols (I)-(III), it contained traces of several less polar polyacetylenes with enediyne, enediynene, and more unsaturated chromophores. An apparent enediynene diol, different from the one detected in C. pyramidalis, appeared in the roots, but with the small amounts obtained its structure could not be elucidated. The triols (IV)-(VI) are the main polyacetylenic components of the stems of C. medium.

The new polyacetylenes were synthesised from the

isolated from other sources. To this end the R_{F} values and u.v. and mass spectra of the polyacetylenes themselves, of their acetyl and trimethylsilyl derivatives, and of their manganese dioxide oxidation products were used.

In C. pyramidalis the polyacetylenes were distributed over all parts of the plant in varying concentrations, but the root extract was easiest to analyse. Of the seven polyacetylenes identified, the mono-ols (I) and (II) and the triols (IV)-(VI) were new. The mono-ol (III) had been isolated from C. glomerata ${ }^{2}$ and the triol (VII) from Lobelia species. ${ }^{1}$ In addition, at least one non-polar polyacetylene was present in the least polar fractions, an apparent enediynene diol was separated in
${ }^{1}$ Part XXXVI, R. K. Bentley, Sir Ewart R. H. Jones, R. A. M. Ross, and V. Thaller, preceding paper.
tetrahydropyran (VIII) and the diol (IX) by Chodkiewicz couplings with the appropriate bromoacetylenes.

EXPERIMENTAL

For general techniques see Part XXXVI. ${ }^{1}$
General Reaction Procedure for the Chodkiewicz Coupling.The bromoacetylene (1 mmol) in MeOH (15 ml) was added during 15 min to the terminal ethynyl compound (1.25 $\mathrm{mmol}), \mathrm{NH}_{2} \mathrm{OH}, \mathrm{HCl}(160 \mathrm{mg}), \mathrm{EtNH}_{2}(1.2 \mathrm{ml} ; 30 \%$ aqueous solution), and $\mathrm{CuCl}(4 \mathrm{mg})$ in MeOH (12 ml), and stirred at 0° under N_{2}. The cooling bath was removed and after 2 h KCN (50 mg) and then ether were added. The product, isolated via ether, was purified by chromatography on columns and, in the case of the triols, SiO_{2} layers.
${ }^{2}$ R. K. Bentley, J. K. Jenkins, Sir Ewart R. H. Jones, and V. Thaller, J. Chem. Soc. (C), 1969, 830.
${ }^{3}$ J. Lam and F. Kaufmann, Chem. and Ind., 1969, 1430.

General Procedure for the Acetylation of the Alcohols.With $\mathrm{Ac}_{2} \mathrm{O}$-pyridine (2:1), $40-48 \mathrm{~h}$ at 20°, purification by repeated chromatography on both columns and layers.

General Procedure for the Silylation of the Alcohols.-With pyridine (5 drops), $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}$ (2 drops), and $\mathrm{Me}_{3} \mathrm{SiCl}$ (1 drop) (in that order), 2 h at 20°, concentration in vacuo, and purification of the petrol extract by chromatography.

General Procedure for the Manganese Dioxide Oxidations.The alcohol and a fivefold weight of MnO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were shaken at 20° for $2-4 \mathrm{~h}$. Filtration, concentration, and purification by chromatography.

9-(Tetrahydropyran-2-yl)-non-trans-8-ene-4,6-diyn-3-ol (I). -1-Bromopent-1-yn-3-ol (163 mg$)^{4}$ and the tetrahydropyranyl acetylene (VIII) ${ }^{2}$ gave the liquid alcohol (I) (120
and $3 \cdot 69$ (dd, $J 16$ and $5 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{O}$). The alcohol (II) gave the corresponding ketone in 54% yield, $M^{+} 214(100 \%)$, $\lambda_{\text {max }} 320$ ($\varepsilon 7900$), 303 (8700), 284 (7400), $267(6700), 251(19,200), 238(22,800)$, and $206 \mathrm{~nm}(24,000)$, $\nu_{\text {max }} 2230,2125,1650,1625,1613,995,975$, and $958 \mathrm{~cm}^{-1}$, $\tau\left(\mathrm{CCl}_{4}\right) \quad 8.0-8.9\left(\mathrm{~m}, \quad \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), \quad 5 \cdot 8-6.8 \quad(\mathrm{~m}$, $\mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}_{2}$), $4 \cdot 2$ (dd, $J 16$ and $\left.2 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}\right), 3.75$ (dd, $J 16$ and $5 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}$), and $3.3-3.95(\mathrm{~m}$, $\mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CO}$). The acetylated alcohol (II) distilled at $100-$ 120° (block) and 0.01 mmHg (Found: C, $74 \cdot 15 ; \mathrm{H}, 6.9$. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 74 \cdot 4 ; \mathrm{H}, 7 \cdot 0 \%\right)$, $v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 2250,2150$, $1745,1645,1625,970$, and $955 \mathrm{~cm}^{-1}$.
Tetradec-trans-6-ene-8,10-diyne-1,5,12-triol (IV).-1-Bromopent-1-yn-3-ol $(204 \mathrm{mg})^{4}$ and the acetylenic diol
(a)

or

$\mathrm{mg}, 55 \%$), b.p. $150-160^{\circ}$ (block) at 0.01 mmHg (Found: C, $76.75 ; \mathrm{H}, 8.0 \%$; M^{+}, 218. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.05$; H, $8.3 \% ; M, 218$), $\lambda_{\text {max. }} 285$ ($\varepsilon 14,000$), 269 (17,500), 255 $(12,000), 242(6000)$, and $230 \mathrm{~nm}(24,000), \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 3640$, $3450,2210,2110,1625,1045$, and $950 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 9 \cdot 0$ (t, J $7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}$), $8 \cdot 0-8 \cdot 8\left(\mathrm{~m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{OH}\right.$ and $\mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}$), $6 \cdot 94 \mathrm{br}(\mathrm{OH}), 5 \cdot 85-6 \cdot 7(\mathrm{~m}, \mathrm{CH} \cdot \mathrm{OH}$ and $\mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}_{2}$), $4 \cdot 25$ (d, $J 17 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH}$), and 3.72 (dd, $J 17$ and $5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}$). The alcohol (I) (40 mg) with MnO_{2} gave the corresponding ketone ($24 \mathrm{mg}, 60 \%$), $M^{+} 216$ (100%), $\lambda_{\text {max. }} 313$ ($\varepsilon 8100$), 294 (9600), 279 (8600), 265 (7100), 250 infl , and $227 \mathrm{~nm}(28,000), \nu_{\max }\left(\mathrm{CCl}_{4}\right) 2200,2110$, $1675,1625,1045$, and $945 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.85(\mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 7 \cdot 9-8.8\left(\mathrm{~m}, \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 7 \cdot 45(\mathrm{q}, J 7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}$), $5 \cdot 9-6 \cdot 8\left(\mathrm{~m}, \mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}_{2}\right.$), $4 \cdot 21$ (dd, J 17 and $2 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}$), and 3.65 (dd, $J 17$ and 5 Hz , $\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}_{2}$). The acetylated alcohol (I) had $\nu_{\max }$ $\left(\mathrm{CCl}_{4}\right) 2220,1740$, and $955 \mathrm{~cm}^{-1}$.

9-(Tetrahydropyran-2-yl)non-trans-1,8-diene-4,6-diyn-3-ol (II).-1-Bromopent-4-en-1-yn-3-ol (202 mg$)^{5}$ and the tetrahydropyranyl acetylene (VIII) gave the liquid alcohol (II) ($117 \mathrm{mg}, 43 \%$), $M^{+} 216(100 \%), \lambda_{\text {max. }} 284(\varepsilon 16,000), 268$ $(20,200), 254(13,500), 241(6800)$, and $215 \mathrm{~nm}(28,000)$, $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) 3610,3440,2210,2110,1640,1625,957$, and $935 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 8 \cdot 0-8 \cdot 8\left(\mathrm{~m}, \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 5 \cdot 8-$ $6.9\left(\mathrm{~m}, \mathrm{CH} \cdot \mathrm{O} \cdot \mathrm{CH}_{2}\right), 5 \cdot 05\left(\mathrm{~d}, J 5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}\right)$, 4.76 (d, J 10 Hz, cis- $H \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$), 4.55 (d, $J 18 \mathrm{~Hz}$, trans $-\mathrm{HCH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$), $4.25(\mathrm{~d}, J 16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{C} H=\mathrm{CH})$,
(IX) ${ }^{2}$ gave the triol (IV) ($53 \mathrm{mg}, 18 \%$), $\lambda_{\text {max }} 284$ ($\varepsilon 14,900$), 268 (18,700), $253.5(12,500), 241$ (6500), $230(3200)$, and $217(15,000) \mathrm{nm}, \nu_{\max }$ (film) 2215 and $960 \mathrm{~cm}^{-1}, \tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $9.1\left(\mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.64\left(\mathrm{~m}, \mathrm{HO} \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right)$, 8.41 (dq, $J 7$ and $7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{OH}$), $6.63\left(\mathrm{~m}, \mathrm{CH}_{2} \cdot-\right.$ $\left.\mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5.95(\mathrm{~m}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}), 5 \cdot 71\left(\mathrm{~m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot-\right.$ $\mathrm{CH} \cdot \mathrm{OH}), 5.6(\mathrm{~m}, \mathrm{OH}), 5.05(\mathrm{~d}, J 5 \mathrm{~Hz}, \mathrm{OH}), 4.5(\mathrm{~d}, J 6 \mathrm{~Hz}$, OH), $4 \cdot 24(\mathrm{~d}, J 16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{C} H=\mathrm{CH}$), and $3 \cdot 6$ (dd, $J 16$ and $6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$). (On addition of $\mathrm{D}_{2} \mathrm{O}$ the signals at $\tau 4 \cdot 5,5 \cdot 05$, and $5 \cdot 6$ disappeared and the signal of the methine proton at $\tau 5.7$ changed to a triplet, $J 7 \mathrm{~Hz}$.) The triacetyl derivative of the triol (IV) distilled at $170-180^{\circ}$ (block) and 0.01 mmHg (Found: C, $66.5 ; \mathrm{H}, 7.75 \%$; $M^{+}, 362 . \mathrm{C}_{20} \mathrm{H}_{26}{ }^{-}$ O_{6} requires $\mathrm{C}, 66 \cdot 3 ; \mathrm{H}, 7 \cdot 25 \% ; M, 362$), and the tristrimethylsilyl derivative had $R_{F} 0 \cdot 5$ [petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($47: 3$), 2 developments] and $M^{+} 452$.

Tetradeca-trans-6,13-diene-8,10-diyne-1,5,12-triol (V).-1-Bromopent-4-en-1-yn-3-ol (360 mg) and the acetylenic diol (IX) gave the $\operatorname{triol}(\mathrm{V})(216 \mathrm{mg}, 42 \%)$, $\lambda_{\max .} 284(\varepsilon 16,500)$, $268.5(20,200), 254(14,700), 241(7400)$, and $213 \mathrm{~nm}(16,000)$, $\nu_{\text {max. }}$ (film) 3440, 2210, 1640, 1624, 985, 960, and $885 \mathrm{~cm}^{-1}$, $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.6\left(\mathrm{~m}, \mathrm{HO} \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 6 \cdot 6(\mathrm{~m}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5 \cdot 9\left[\mathrm{~m}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2}\right], 5 \cdot 69(\mathrm{t}, J 6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5 \cdot 05$ [d, J $\left.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{C} \equiv \mathrm{C}\right]$, $5 \cdot 04(\mathrm{~d}, J 6 \mathrm{~Hz}, \mathrm{OH}), 4.78(\mathrm{~d}, J 10 \mathrm{~Hz}, c i s-\mathrm{HCH}=\mathrm{CH} \cdot \mathrm{CH} \cdot-$
${ }^{4}$ Sir Ewart R. H. Jones, B. E. Lowe, and G. Lowe, J. Chem. Soc., 1964, 1476.
${ }^{5}$ F. Bohlmann and H. Bornowski, Chem. Ber., 1961, 94, 3189.

OH), $4 \cdot 62$ (d, J 17 Hz , trans $-\mathrm{HCH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$), $4 \cdot 19$ (d, $J 16 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}), 4 \cdot 12(\mathrm{~d}, J 6 \mathrm{~Hz}, \mathrm{OH})$, 4.07 (ddd, $J 17,10$, and $5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$), and 3.55 (dd, $J 16$ and $5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{OH}$). (On addition of $\mathrm{D}_{2} \mathrm{O}$ the signals at $\tau 4 \cdot 12,5 \cdot 04$, and $5 \cdot 69$ disappeared; the signal at $\tau 6.6$ remained a multiplet.) The triacetyl derivative of the triol (V) decomposed during distillation at $2 \times 10^{-5} \mathrm{mmHg}\left(M^{+}, 360 . \quad \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right.$ requires $\left.M, 360\right)$, and the tristrimethylsilyl derivative had $R_{\mathrm{F}} 0.4$ [petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($47: 3$), 2 developments) and $M^{+} 450$.
Tetradeca-trans, trans-6,12-diene-8,10-diyne-1,5,14-triol (VI).-5-Bromopent-trans-2-en-4-yn-1-ol ${ }^{2}(444 \mathrm{mg})$ and the acetylenic diol (IX) gave the triol (VI) ($283 \mathrm{mg}, \mathbf{4 3} \%$) which crystallised from $\mathrm{Et}_{2} \mathrm{O}$-petrol-MeOH at -40°; m.p. $90-$ 91° (Found: C, $72 \cdot 0 ; \mathrm{H}, 7 \cdot 6 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 71 \cdot 75$; $\mathrm{H}, 7 \cdot 75 \%), \lambda_{\max } 313(\varepsilon 20,000), 293 \cdot 5(24,600), 276 \cdot 5(16,400)$, $261 \cdot 5(8300)$, $247 \mathrm{infl}, 237(33,000)$, and $233 \mathrm{~nm}(32,200)$, $\nu_{\max }$ (film) 3380, 2180, 2110, 1620, 950 , and $910 \mathrm{~cm}^{-1}$, $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.61\left(\mathrm{~m}, \mathrm{HO} \cdot \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 6.57$ (m, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{OH}\right), 5 \cdot 9\left[\mathrm{~m}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2}\right], 5 \cdot 69(\mathrm{t}, J 5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5 \cdot 04$ [d, $J 5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2}$], $4 \cdot 99$ (t, J5 Hz, HO $\cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH}$), $4 \cdot 17$ and $4 \cdot 13$ (two d, $J 16 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH} \cdot[\mathrm{C}=\mathrm{C}]_{2} \cdot \mathrm{CH}=\mathrm{CH}$), $3 \cdot 6$ (dd, $J 16$ and $5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot-$ $\mathrm{CH} \cdot \mathrm{OH}$), and 3.5 (dt, J 16 and $4 \mathrm{~Hz}, \mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH}$). (On addition of $\mathrm{D}_{2} \mathrm{O}$ the signals at $\tau 4.99,5 \cdot 04$, and $5 \cdot 69$ disappeared.) The triacetyl derivative of the triol (VI) had $M^{+} 360\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}\right.$ requires $\left.M, 360\right)$, and the tristrimethylsilyl derivative had $R_{\mathrm{F}} 0.3$ [petrol- $\mathrm{Et}_{2} \mathrm{O}$ (47:3), 2 developments] and $M^{+} 450$.
Isolation of Polyacetylenes from Campanula pyramidalis L. -Chopped roots (2 kg ; from eight plants grown in the greenhouse and harvested at termination of flowering in late September) were extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The concentrated extract (4 g) was chromatographed on a SiO_{2} column ($250 \times 3.5 \mathrm{~mm}$) by gradient elution [petrol (0.5 l) was enriched first with $\mathrm{Et}_{2} \mathrm{O}(11)$ and then with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ ($17: 3 ; 0.5 \mathrm{l})$]. Fractions (50 ml) were collected and assayed spectrophotometrically; those with similar properties were combined into four groups, each of which was rechromatographed on SiO_{2} layers with several solvent systems.

Fractions	$\lambda_{\text {max. }} / \mathrm{nm}$
6	312,292 (traces)
$8-10$	284,268254240
$11-14$	$312,292,276$
$22-26$	312,292 infl, 284, 268, 253

Fractions 8-10 were separated [with petrol- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$ (19:1), and by continuous development with petrol $-\mathrm{Me}_{2} \mathrm{CO}$ ($10: 1$)] into the alcohols (1) and (11) and these were converted by MnO_{2} into the corresponding ketones.
Fractions 11-14 gave on chromatography [petrol$\mathrm{Et}_{2} \mathrm{O}$ (1:1) and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($49: 1$)] the alcohol (III) $(4 \mathrm{mg})$.

Fractions 22-26 were further separated by repeated
chromatography of the mixture itself [with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ (19:1) and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1)], the trimethylsilylated mixture [petrol- $\mathrm{Et}_{2} \mathrm{O}(24: 1)$ and petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(47: 3)$], and the acetylated mixture [continuous development with petrol- $\left.\mathrm{Et}_{2} \mathrm{O}(1: 1)\right]$. The triols (IV)-(VI), as well as the triol (VII) and/or their derivatives were isolated in very small amounts ($0.5-2 \mathrm{mg}$). When the triol mixture and TsOH in $\mathrm{Me}_{2} \mathrm{CO}$ was heated under reflux for 30 min , an increase of the relative intensities of the enediynene peaks was observed and the formation of the mono-ols (I) and (III) was detected. The least polar polyacetylene band present in fractions $22-26$ (ca. 2 mg) had $\lambda_{\text {max }} 284$ (rel. E 0.83), $268(1 \cdot 0), 253.5(0 \cdot 6)$, and $241 \mathrm{~nm}(0.2)$ and $\tau\left(\mathrm{CDCl}_{3}\right)$ $4.23(\mathrm{~d}, J 16 \mathrm{~Hz})$ and $3.73(\mathrm{dd}, J 16$ and 5 Hz$)$; its MnO_{2} oxidation product had $\lambda_{\max } 298.5$ (rel. $E 0.69$), 282 (1.0), $266(0.5)$, and $252(0.25)^{\max } \mathrm{nm}$ and its acetylation product appeared to be a diacetate ($M^{+} 318$), $\nu_{\text {max. }} 1745$ and 1220 $1230 \mathrm{~cm}^{-1}$.

Isolation of Polyacetylenes from Campanula medium L.Minced roots (1 kg ; from twelve plants harvested near the termination of flowering in middle August) were extracted, the extract was worked up as described for C. pyramidalis, and the following fractions were combined.

Fractions	$\lambda_{\text {max. }} / \mathrm{nm}$
$5-7$	$312,292,279,264$, and longer wavelength
$10-14$	$284,268,254,241$
$17-21$	$312,293,276$
$22-24$	$312,293,283,268, \mathbf{2 5 4}$
$25-35$	$283,268,254$

Fractions 5-7 gave on chromatography [petrol- $\mathrm{Et}_{2} \mathrm{O}$ (19:1)] only two reasonably homogeneous fractions (ca. 0.5 mg of each), both with similar u.v. absorption ($\lambda_{\text {max }}$ $312,293,276,267$, and 247 nm); the less polar had $M^{+} 202$ and the more polar 200.

Fractions $10-14$ yielded the alcohols (I) and (II) (ca. 5 mg of each) and fractions $17-21$ the alcohol (III) (4 mg).

Fractions 25-35 were chromatographed $\left[\mathrm{Et}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(3: 1)\right]$ and gave what appeared to be a diol (ca. 1 mg), $M^{\dot{+}} 234, \lambda_{\max } 284$ (rel. $E 0 \cdot 85$), 269 (1.0), 254 (0.65), and $240 \mathrm{~nm}(0.5), \nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1}$. The acetylation product had $M^{+} 318$ and the MnO_{2} oxidation product had $M^{+} 232, \lambda_{\text {max. }} 313$ (rel. E 0.8), 295 (1.0), 280 (0.9), and $266 \mathrm{~nm}(0 \cdot 7)$.

Finely cut stems of C. medium were extracted and the extracts were worked up as described for the roots. In the most polar fractions the presence of the triols (IV)-(VI) was detected.

We thank the U.S.S.R. Academy of Sciences whose Agreement on Co-operation with the Royal Society allowed Sh. O. B. to participate in this work, the National Research Council of Canada for a fellowship (to J. K. J.), and the S.R.C. for support.
[2/1716 Received, 20th July, 1972]

